Refinement of the Structure of Tripotassium-Ditungsten-Enneachloride, K₃W₂Cl₉

BY W. H. WATSON*, JR. AND JÜRG WASER

Chemistry Department, The Rice Institute, Houston, Texas, U.S.A.

(Received 5 March 1958)

The structure of $K_3W_2Cl_9$ has been redetermined from single crystal data and found to be in agreement with that given by Brosset (1935). The parameters were refined by Fourier and least-squares methods. The W–W bond in the $W_2Cl_9^{-3}$ complex is of a length corresponding to a double bond.

The structure of $K_3W_2Cl_9$ was established originally by Brosset (1935) on the basis of powder data and has been discussed by Pauling (1947*a*). The present note describes a refinement based on single crystal data.

The symmetry of precession photographs and the systematic extinctions found (00l only when $l \neq 2n$) are compatible with the space group proposed by Brosset (1935), $C_{6h}^2 - P6_3/m$. The unit-cell dimensions were determined from back reflections whose Bragg angles were established from fortunate coincidences with diamond powder lines. They are: $a = 7 \cdot 17_1$ Å and $c = 16.25_8$ Å, based on Straumanis' and Aka's (1951) value of 3.5668 Å for the cubic lattice constant of diamond. Intensity data were obtained with Mo Kradiation from single crystals which had been ground to cylinders of less than 0.1 mm. diameter. The intensities of the hh0, h0l, and hhl zones were collected on the Weissenberg goniometer using the multiple-film technique and were estimated visually by comparison with a reference scale prepared by varying the exposure time of a selected reflection. The intensities were corrected for absorption (Internationale Tabellen, 1935) as well as for Lorentz and polarization factors (Lu, 1943).

The unit cell contains two $K_3W_2Cl_9$ units. Of the six K atoms, two (K_a) occupy positions (a) (Internationale Tabellen, 1935) with coordinates $\pm (0, 0, \frac{1}{4})$, while the other four (K_f) are located in set (f), $\pm \{(\frac{1}{3}, \frac{2}{3}, z), \pm (\frac{1}{3}, \frac{2}{3}, \frac{1}{2} - z)\}$, which has one free parameter z_K . The four W atoms have a similar set of coordinates (f), the parameter assuming the value z_W . Of the eighteen Cl atoms, six (Cl_m) are in set (m), $\pm \{(p, q, \frac{1}{4}); (\bar{q}, p-q, \frac{1}{4}); (q-p, \bar{p}, \frac{1}{4})\}$, while the other twelve (Cl_i) are in the general position $(i), \pm \{[(x,y,0); (\bar{y},x-y,0); (y-x,\bar{x},0)]+[(0,0,z); (0,0,\frac{1}{2}-z)]\}$. There are seven positional parameters.

Brosset's values for these parameters were found in reasonable agreement with our intensity data and the parameters were refined first by the use of Fourier projections in which the W-atoms had been subtracted, and later by seven cycles of least-squares refinements (Hughes, 1941). Two of these refinements were run on an Elecom digital computer, using a

* Present address: Texas Christian University, Chemistry Department, Fort Worth, Texas, U.S.A.

program developed by Dr H. Steinfink & Miss E. E. Allen, the remaining five on a Datatron digital computer, using a program written by Lavine & Rollett (1956). Both programs use a weighting scheme proposed by Hughes (1941) and in both programs shifts of the temperature parameters may be computed. Unobserved structure factors are given zero weight in the Elecom program while they are included in the Datatron program, provided the computed values are larger than a minimum value, F_{\min} , chosen close to the values actually observed for the weakest reflections, and for simplicity taken to be constant. In addition, in the computation of F_o-F_c , F_o is taken to be F_{\min} rather than zero. In the present work $F_{\min} = 20.0$ (or $2.5 F_{\min} = 50$ in Table 2). During the refinement the *R*-factor dropped from

During the refinement the *R*-factor dropped from 0.215 to 0.131, while the weighted sum of residuals decreased from 30.9 to 11.9. The ratio $\Sigma |F_c|/\Sigma |F_o|$ is 1.011. Table 1 lists the final parameter values together

Table 1. Atomic parameters

Atoms	Parameters	σ	σ(Å)	B
\mathbf{K}_{a}		—		$5 \cdot 0$
\mathbf{K}_{t}	$z_{\rm K} = 0.5718$	0.0011	0.02	$5 \cdot 0$
Ŵ _f	$z_{W} = 0.3241$	0.0002	0.003	2.6
Cl_m	p = 0.4588	0.0056	0.04	3.6
	q = 0.4472	0.0056	0.04	
Cl_i	$\hat{x} = 0.1348$	0.0038	0.03	$5 \cdot 2$
-	y = 0.3506	0.0038	0.03	
	z = 0.4074	0.0012	0.02	

with their variances in fractions of unit-cell edges as well as in Å, as they were obtained from the leastsquares treatment. Also listed are the temperature parameters which were employed in the usual expression exp $(-B\sin^2\theta/\lambda^2)$ in the computation of the structure factors.

The atomic structure amplitudes used were averages between the values given by Pauling & Sherman (1932) with those of Thomas & Fermi (Internationale Tabellen, 1935). The W values were all decreased by 0.15 to correct for anomalous dispersion (James, 1954). The observed and computed structure factors are listed in Table 2.

From the unit-cell dimensions and parameters the distances and angles listed in Table 3 or shown in Fig. 1 were computed.

Table 2. Structure factors

Both computed and observed values of the structure factors have been multiplied by a factor 2.5. Starred entries were included in the least-squares procedure, although unobserved, with $2.5 F_{o}$ set equal to 50.

								hk0							
h	k	l	F_o	F_{c}	h	k	l	F_o	F_{c}	1 1	'n	k	l	F_o	F_{c}
0	1	0	336	-377	5	3 (0	118	-135		£	6	0	71	-60
1	1	0	529	627	6	3 (0	151	170		5	6	0	0	-26
2	1	0	277	-324	7	3 (0	0	-41		3	6	0	85	60
3	1	0	258	-323	8	3 (0	0	44	1 '	7	6	0	0	
4	1	0	408	396	*9	3 (0	50	52		3	6	0	15	-15
5	1	0	76	-53	10	3 (0	0	-19)	7	0	103	-87
6	1	0	79	-113	0	4 (0	209	-208		1	7	0	135	163
7	1	0	128	156	1	4 (0	350	370		2	7	0	65	-64
8	1	0	128	-72	2	4 (0	143	-147		3	7	0	54	-60
9	1	0	51	-50	3	4	0	74	-41		4	7	0	105	102
*10	1	0	50	62	4	4	0	225	225		5	7	0	0	-28
11	1	0	0	-20	5	4	0	63	58		6	7	0	0	-25
0	2	0	323	291	6	4	0	54	-50)	8	0	92	-61
1	2	0	147	-130	7	4	0	92	102		1	8	0	0	-36
2	2	0	896	781	8	4	0	0	-34		2	8	0	86	94
3	2	0	196	216	9	4	0	0	-15		3	8	0	0	-34
4	2	0	120	-133	0	5	0	115	-121		1	8	0	0	-32
5	2	0	271	305	1	5	0	177	-206		5	8	0	0	47
6	2	0	102	-106	2	5	0	262	316		0	9	0	128	137
7	2	0	0	-40	3	5	0	69	-72		1	9	0	0	-44
8	2	0	91	95	4	5	0	76	-85		2	9	0	0	-32
9	2	0	0	23	5	5	0	101	108	*	3	9	0	50	54
10	2	0	0	-21	*6	5	0	50	-50		4	9	0	0	-21
11	2	0	0	37	7	5	0	0	-34		0	10	0	42	-43
0	3	0	565	580	8	5	0	0	46		1	10	0	79	60
1	3	0	181	-148	0	6	0	290	321		2	10	0	0	-23
2	3	0	206	-198		6	0	132	-131		3	10	0	0	-17
3	3	0	264	285		6	0	85	98		0	11	0	0	-21
4	3	0	133	155	3	6	0	134	162	1	1	11	0	0	-18

The point group symmetry of the $W_2Cl_9^{3-}$ ion is $D_{3h}-\overline{6}2m$, although the space group only requires

Table 3. Some interatomic distances and angles

(a) Distances in one complex ion (see also Fig. 1)

• •		-	•	0,
Atoms	Distance Å	(Å)	Number of o per compl (per K ⁺ in pa	listances ex ion renthesis)
$Cl_i - Cl_i$	3.44	0.03	6	
$Cl_m - Cl_m$	3.76	0.04	3	
$Cl_i - Cl_m$	$3 \cdot 29$	0.03	12	
	(b) Distances	s between	different ions	
$Cl_m - Cl_m$	3.51	0.04	6	
$Cl_i - Cl_i$	3.80	0.03	12	
$Cl_i - Cl_i$	3.30*	0.03	6	
$Cl_i - Cl_i$	3.73*	0.03	6	
$W-K_f$	4.03	0.02	6	(6)
$Cl_i - K_a$	3.31	0.02	6	(6)
$Cl_{i-K_{f}}$	3.31	0.03	6	(3)
$Cl_i - K_f$	3.33	0.03	6	(3)
$Cl_i - K_f$	3.89	0.03	6	(3)
$Cl_m - K_a$	3.25	0.02	3	(3)
Cl_m-K_a	3.92	0.02	3	(3)
Cl_m-K_f	3.54	0.03	6	(3)
		(c) Angle	S	
		\mathbf{Angl}	e (Degree)	
	Cl_i-W-Cl_i	91.4	° 0.9°	

$Cl_i - W - Cl_i$	91·4°	0·9°
$Cl_m - W - Cl_m$	98·4	1.0
$Cl_i - W - Cl_m$	84.8	0.8

* Involving anions in different layers.

 D_3 -32. The configuration of the Cl-atoms is that of two distorted octahedra which share one face and in which the W-atoms are located centrally, but closer

Table 2	2 (cont.)
---------	-----------

				hhi						
h k l	F_o	F_{c}	h k l	Fo	F_{c}	1	h k	l	F_o	F_{c}
111	0	3	2 2 20	93	-95		44	15	0	8
$1 \ 1 \ 2$	306	-321	2 2 21	0	1		44	16	122	42
113	195	-177	$2 \ 2 \ 22$	89	53		44	17	0	
114	119	-106	$2 \ 2 \ 23$	0	1		44	18	0	37
115	0	37	$2 \ 2 \ 24$	0	24		44	19	0	2
116	406	470	3 3 1	0	10		44	20	90	63
117	0	15	3 3 2	155	-156		44	21	0	-3
118	406	437	3 3 3	137	-137		44	22	0	30
11 9	99	90	334	62	- 69		55	1	0	4
*1 1 10	50	-53	3 3 5	0	37		55	2	74	-59
1 1 11	0	-41	3 3 6	255	266		55	3	0	-24
$1 \ 1 \ 12$	221	237	337	0	7		55	4	0	-29
1 1 13	0	-9	3 3 8	229	-240		55	5	0	8
1 1 14	216	-208	3 3 9	78	91		5 5	6	95	98
$1 \ 1 \ 15$	0	-39	3 3 10	0			5 5	7	0	-1
1 1 16	136	126	3 3 11	0	-45		55	8	113	-87
$1 \ 1 \ 17$	0	28	3 3 12	151	132		5 5	9	0	16
1 1 18	122	106	3 3 13	0	-5		55	10	0	-l
$1 \ 1 \ 19$	0	1	3 3 14	153	-126		5 5	11	0	- 8
$1 \ 1 \ 20$	189	-167	3 3 15	0	-42		55	12	76	55
$1 \ 1 \ 21$	0	12	3 3 16	85	69		55	13	0	0
*1 1 22	50	61	3 3 17	0	31		*5 5	14	50	-56
$1 \ 1 \ 23$	0	-12	3 3 18	89	68		66	1	0	-4
$1 \ 1 \ 24$	0	11	3 3 19	0	-0		66	2	0	-32
$2\ 2\ 1$	0	3	3 3 20	136	105		66	3	0	8
$2\ 2\ 2$	262	-265	3 3 21	0	14		66	4	0	-16
$2\ 2\ 3$	0	10	3 3 22	0	43		66	5	0	-5
$2\ 2\ 4$	152	-121	3 3 23	0	13		66	6	85	53
$2\ 2\ 5$	0		3 3 24	0	7		66	7	0	3
$2\ 2\ 6$	131	107	441	0	-9		66	8	0	47
$2\ 2\ 7$	0	1	442	123	-104		66	9	0	-6
$2\ 2\ 8$	256	-257	443	0	22		66	10	0	1
$2\ 2\ 9$	0	-6	444	66	-50		77	1	0	-0
$2 \ 2 \ 10$	0	4	445	0			77	2	0	-18
2 2 11	0	3	446	148	132		77	3	0	-0
2 2 12	327	326	447	0	6		77	4	0	-8
2 2 13	0	1	448	140	139		77	5	0	-0
2 2 14	242	-252	449	0	-15		77	6	0	26
ZZ 15	140	3	4 4 10	0	1		88	1	0	-0
2 2 16	140	85	4 4 11	0	9		88	z	0	-8
ZZ 17	U		4 4 12	120	109		99	1	0	-0
Z Z 18	U	38	4 4 13	0	-3		99	2	0	
2219	0	0	4414	139	-100					

to the plane of the shared face (1.205 Å) than to the planes of the peripheral faces (1.35 Å). The W–W distance of 2.409 Å is shorter than in metallic W (2.519 Å) and corresponds, in fact, closely to the length expected for a W=W double bond (Pauling, 1947b). The W–Cl bonds to the shared Cl atoms are longer than those of the peripheral Cl atoms. The two triangles formed by the peripheral Cl atoms, are rotated by 60.0° relative to the triangle of the central Cl atoms, as is normal for two octahedra sharing faces. (A recent description of the W₂Cl₉³⁻ complex (Wessel & IJdo, 1957), according to which the above angle is 37.5° , is erroneous.)

While the W-atoms evidently are joined by a bond, the situation is different in the related $\text{Cr}_2\text{Cl}_9^{3-}$ complex. As reported in a recent paper by Wessel & IJdo (1957) on the crystal structure of $\text{Cs}_3\text{Cr}_2\text{Cl}_9$ the Cratoms are closer to the planes of the peripheral Clatoms than to the plane of the shared Cl-atoms, and the magnetic moment of $\text{Cs}_3\text{Cr}_2\text{Cl}_9$ indicates 3 unshared electrons per Cr-atom while the W-complex is diamagnetic.

The centers of the $W_2Cl_9^{3-}$ ions have the parameters of hexagonal closest packing. The ratio of c/a (2·267) to the corresponding quantity (1·633) for hexagonally closest packed spheres is 1·39, which is a measure of the ellipticity of the anions. Either kind of K⁺ ion has twelve chlorine neighbors.

We wish to thank Dr Hugo Steinfink and Miss E. E. Allen for help with part of the computations. Our appreciation is further due to the Robert A. Welch Foundation of Houston, Texas, for financing much of the computing and to the Exploration and Production Research Laboratory, in Houston, Texas, of the Shell Development Company for the use of their Elecom Digital Computer.

References

BROSSET, C. (1935). Ark. Kemi. Min. Geol. 12 A, Nr. 4. HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737. Table 2 (cont.)

				h0l				
h k l	F_o	F_{c}	h k l	F_{o}	F_{c}	h k l	F_{o}	F_{c}
0 0 2	368	454	303	0	23	5017	0	-10
004	208	-213	304	95	-93	5018	0	-43
006	121	81	305	0	25	5 0 19	72	71
0 0 10	270	-310	306	266	331	5 0 20	74	60 67
0 0 10 0 12	555	513	308	294	42 344	5021 5022	90 0	-07
0 0 14	345	-369	3 0 9	0	-10	6 0 1	ŏ	23
0 0 16	98	103	3 0 10	0	-37	602	142	-138
0 0 18	0	20	3 0 11	0	-7	603	0	4
0 0 20	93	- 96		208	237		70	-64
0 0 24	0	37	3 0 14	218	-204	60 6	131	10
101	444	-535	3 0 15	0	-0	607	0	-22
1 0 2	141	149	3 0 16	125	108	608	173	$-170^{}$
103	77	85	3 0 17	0	1	609	0	-0
104 105	94 246	87	3 0 18	89	80	6 0 10	0	-2
$10 \ 6$	222	-238	3 0 20	136	-11 -136	6 0 11	181	6
107	317	-368	3 0 21	0	2	6 0 12	0	151
108	208	240	*3 0 22	50	54	6 0 14	157	-132
109	181	196	3 0 23	0	-0	6 0 15	0	-2
	0 95	14 67		0	14	*6 0 16	50	53
$1 0 11 \\ 1 0 12$	143	-134	401	197	- 220	6018	0	2 41
1 0 13	301	-317	4 0 3	162	181		117	-123
$1 \ 0 \ 14$	109	115	404	170	180	702	19	5
	168	153	405	232	279	703	57	53
1010	13	04 47	406	173	- 164		83	72
1 0 18	Ő	-49	408	209	340	70 6	95	123
1 0 19	91	-97	409	42	58	707	184	-149
$1 \ 0 \ 20$	93	81	4 0 10	100	90	708	117	98
1 0 21 1 0 22	115	115	4 0 11	72	63	7 0 9	44	48
1022 1023	0	30 34	4 0 12	89 130	75	7 0 10	0 70	- 35
1 0 24	ŏ	-8	*4 0 14	50	- 101 56		19	-34
$2 \ 0 \ 1$	234	263	4 0 15	188	138	7 0 13	89	93
$\begin{array}{ccc} 2 & 0 & 2 \\ 0 & 0 & 0 \end{array}$	139	-134	4 0 16	0	9	7 0 14	0	33
203	338	-418		0	15		84	66
204 205	415	-420	4 0 18	50 191		7 0 16	0	-1
206	220	-250	4 0 20	95	71	7 0 18	ŏ	-28^{0}
207	504	522	4 0 21	106	82	801	115	111
208	342	345	4 0 22	0	-44	802	31	41
20.9 2010	180		4 0 23	0	16	803	62	-46
$ \frac{1}{2} $ $ \frac{1}{0} $ $ \frac{1}{11} $	105	- 95	5024	192	224^{2}	80 4	84	74
2 0 12	106	-82	502	0	43	806	92	-65
2 0 13	151	182	503	112	-120	807	112	94
$^{+2}$ 0 14 2 0 15	50 197	51 	504	83	75	*808	50	52
$\frac{1}{2}$ 0 16	0	37	505	157	-164	809	0	- 29
$2 \ 0 \ 17$	0	-8	507	222	232	901	Õ	0
2 0 18	80	-81	508	151	152	*9 0 2	50	-67
2019	149	135	*509	50	57	903	0	0
2020 2021	99 104	99 00		0	-17	904	0	-18
*2 0 22	50	— 99 — 66	5011	15 42	- 03 - 53	905	0	0
2 0 23	Õ	14	5 0 13	153	$-0.00 \\ 160$		0	-49
2 0 24	0	9	5014	27	52	10 0 3	Õ	1
301	0	47	5 0 15	123	-115	11 0 1	0	35
o v z	Z04	-274	5016	0	- 23	1 10 2	0	5

Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935), vol. 2. Berlin: Borntraeger. PAULING, L. & SHERMAN, J. (1932). Z. Kristallogr. 81, 1. PAULING, L. (1947a). Chem. Engng. News (N.Y.), 25, 2970. PAULING, L. (1947b). J. Amer. Chem. Soc. 69, 542. STRAUMANIS, M. E. & AKA, E. Z. (1951). J. Amer. Chem.

JAMES, R. W. (1954). The Optical Principles of the Diffraction of X-rays, 2nd ed. London: Bell.
LAVINE, L. R. & ROLLETT, J. S. (1956). Acta Cryst. 9, 269.

Lavine, L. R. & Rollett, J. S. (1956). Acta Cryst. 9, 269. Lu, C. S. (1943). Rev. Sci. Instrum. 14, 331.

WESSEL, G. J. & IJDO, D. J. W. (1957). Acta Cryst. 10, 466.

Soc. 73, 5643.